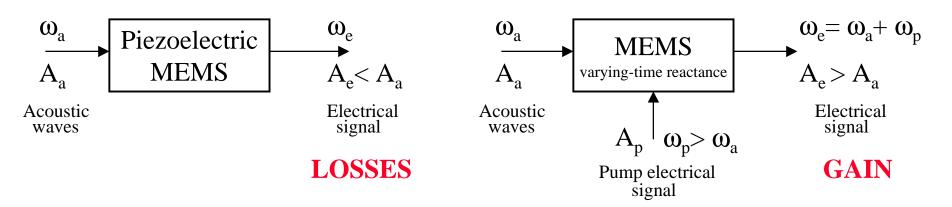


DARPA Air-Coupled Acoustic Sensors Workshop August 24-25, 1999, Crystal City, VA

Novel Parametric-effect MEMS Amplifiers/Transducers for Sonar Applications

Jean-Pierre Raskin, Andrew Brown and Gabriel M. Rebeiz
The University of Michigan, Radiation lab.
1301 Beal Ave, 3239 EECS Blg, Ann Arbor, MI 48109-2122
raskin@engin.umich.edu, rebeiz@ engin.umich.edu



Idea: Use Parametric Effects in MEMS

Transducer

Parametric Amplifier Transducer

First mechanical parametric amplifier using MEMS

Advantages: > gain at the transducer level

➤ low-noise (no 1/f noise)

➤ silicon technology: high integration, low cost

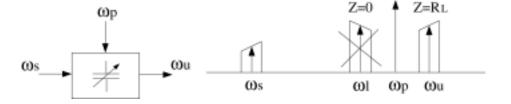
➤ wide bandwidth (kHz - MHz)

Parametric Effects

- ➤ have been largely used in 1960's: up and down frequency conversion, amplification at microwave frequencies.
- representation are based on time varying properties of a capacitor or inductor (Manley-Rowe Equations).
- \triangleright allow to **transfer power** from the pump frequency (ω_p) to the input signal frequency (ω_s) or to the up-conversion frequency $(\omega_p) \Rightarrow GAIN$.
- The source of power for a usual transducer amplifier is a **dc supply**, for a parametric amplifier: the **source of power is the pump electrical signal** (ω_p) , which is a higher frequency than the input signal (ω_s) .

Amplifiers / up-converters Gain - Bandwidth

Time varying capacitor:
$$C(t) = C_0 + C_1 \cdot \cos(\omega_p t) + C_2 \cdot \cos(2\omega_p t) + \dots$$
 with $C_1/C_0 = 0.5 - 1.0$


⇒ currents and voltages are generated at all combination frequencies:

$$f_{n,m} = n.f_s \pm m.f_p \ (n,m = -\infty ... \infty)$$

Practically, we will keep only certain combinations of frequencies.

Noninverting up-converter

$$f_u = f_p + f_s$$

Equivalent input conductance is positive

⇒ Stable amplifier and possible matching

Max. gain and bandwidth at matched conditions:

$$g_{u} = g_{s} = 2\pi C_{1} \cdot \sqrt{f_{s} \cdot (f_{p} + f_{s})}$$

Manley and Rowe:
$$\frac{P_S}{f_S} + \frac{P_u}{f_u} = 0$$

Transducer and Power Gain:
$$\frac{P_u}{P_s} = \frac{f_p + f_s}{f_s} > 1$$

Bandwidth:
$$B = \frac{C_1}{C_0} \cdot \sqrt{2.f_s.(f_p + f_s)}$$